

## Introduction:

Streptavidin, isolated from Streptomyces avidinii, is a tetrameric protein of 4 x 13.2 kDa with an extinction coefficient at 280 nm of  $\epsilon$  280 = 167000 M $^{-1}$  cm $^{-1}$  [1]. Streptavidin binds very tightly to the small molecule biotin. The dissociation constant of the complex is extremely small (Kd  $\approx$  10 $^{-15}$  M), ranking among the strongest non-covalent interactions. This has made the streptavidin/biotin system a useful tool in numerous biochemical applications.

ATTO streptavidin conjugates may be used as secondary detection reagents in flow cytometry, immunoassays, blot analysis, histochemical applications, etc. The dye conjugates are supplied as solvent-free lyophilized solids. The available conjugates are shown in Table 1.

## **Storage and Handling:**

ATTO-Dye labeled streptavidins are supplied as lyophilizates and should be stored at  $<-20^{\circ}$  C, desiccated and protected from light. When stored as indicated, the product is stable for at least three years.

ATTO streptavidin conjugates are readily soluble in water. For the preparation of stock solutions allow the vial to equilibrate to room temperature before opening. Dissolve the ATTO-streptavidin conjugate in distilled water to a concentration of 1 mg/ml. For long-term storage of such solutions, one should add sodium azide to a concentration of 5 mM. Protected from light and stored at  $2-6\,^{\circ}$  C, solutions are stable for up to six months. For longer storage you may divide the solution into aliquots and freeze at  $-20\,^{\circ}$  C. However, one should avoid repeated freezing-and-thawing cycles.

## **Labeling with ATTO-Dye Labeled Streptavidin:**

We recommend to centrifuge protein conjugate solutions briefly before use (microcentrifuge). The supernatant will be free of protein aggregates that may have formed and could cause non-specific background binding. For most applications, a streptavidin conjugate concentration of  $1 - 10 \, \mu \text{g/ml}$  is satisfactory. However, staining protocols may vary considerably with the application at hand. Therefore, one may need to determine the appropriate conjugate concentration empirically.

Aladdin Scientific Phone: +1 (833) 552-7181



| Table 1. Iloberties of Allo uve labered streptas | Table 1 | -dye labeled strepta | idin: |
|--------------------------------------------------|---------|----------------------|-------|
|--------------------------------------------------|---------|----------------------|-------|

| Dye        | λabs | λem | εmax   | CF260 | CF280 |
|------------|------|-----|--------|-------|-------|
| ATTO 390   | 390  | 465 | 24000  | 0.52  | 0.08  |
| ATTO 425   | 445  | 477 | 45000  | 0. 27 | 0. 17 |
| ATTO 430LS | 440  | 536 | 32000  | 0.41  | 0. 26 |
| ATTO 465   | 460  | 504 | 75000  | 1. 12 | 0. 54 |
| ATTO 488   | 503  | 525 | 90000  | 0. 25 | 0.10  |
| ATTO 490LS | 502  | 649 | 40000  | 0.37  | 0. 18 |
| ATTO 514   | 514  | 555 | 115000 | 0.21  | 0.08  |
| ATTO 532   | 537  | 555 | 115000 | 0. 22 | 0. 11 |
| ATTO 540Q  | 547  |     | 105000 | 0. 22 | 0. 24 |
| ATTO 542   | 542  | 562 | 120000 | 0.18  | 0.08  |
| ATTO 550   | 556  | 575 | 120000 | 0. 24 | 0. 12 |
| ATTO 565   | 568  | 593 | 120000 | 0.34  | 0. 16 |
| ATTO 590   | 601  | 623 | 120000 | 0.42  | 0.44  |
| ATTO 594   | 608  | 633 | 120000 | 0.26  | 0.51  |
| ATTO 610   | 624  | 640 | 150000 | 0.02  | 0.05  |
| ATTO 612Q  | 621  | 70  | 115000 | 0.35  | 0. 57 |
| ATTO 620   | 625  | 644 | 120000 | 0.05  | 0.07  |
| ATTO 633   | 638  | 657 | 130000 | 0.05  | 0.06  |
| ATTO 643   | 643  | 665 | 150000 | 0.05  | 0.04  |
| ATTO 647   | 648  | 671 | 120000 | 0.08  | 0.04  |
| ATTO 647N  | 653  | 668 | 150000 | 0.06  | 0.05  |
| ATTO 655   | 665  | 682 | 125000 | 0. 24 | 0.08  |
| ATTO 665   | 662  | 682 | 160000 | 0.07  | 0.06  |
| ATTO 680   | 679  | 699 | 125000 | 0.30  | 0. 17 |
| ATTO 700   | 695  | 720 | 120000 | 0. 26 | 0. 41 |

λabs: longest-wavelength absorption maximum in nm (solvent: PBS, pH 7.4, degree of labeling (DOL): 2-3);

 $\lambda$  em: fluorescence maximum in nm (solvent: PBS, pH 7.4);  $\epsilon$  max: molar decadic extinction coefficient at the longestwavelength absorption maximum in M<sup>-1</sup> cm<sup>-1</sup>; CF260 =  $\epsilon$  260/ $\epsilon$  max; CF280 =  $\epsilon$  280/ $\epsilon$  max;

[1] S.C. Gill, P.H. von Hippel, Calculation of Protein Extinction Coefficients from Amino Acid Sequence Data, Analytical Biochemistry 182, 1989, 319-326.

Aladdin Scientific Phone: +1 (833) 552-7181